Syllabus

Оберіть спеціальність*

Тернопільський національний технічний університет імені Івана Пулюя

Факультет прикладних інформаційних технологій та електроінженерії

Кафедра біотехнічних систем

Biomedical Signal Processing

картка навчальної дисципліни

Спеціальність
Спеціальність 163 - Біомедична інженерія (бакалавр)
Галузь знань 16 Хімічна та біоінженерія
Освітній рівень бакалавр
Навчальна дисципліна
Статус навчальної дисципліни обов'язкова
професійної підготовки
Курс 3
Семестр 6
Форма навчання денна
Розподіл аудиторних годин
36– лекції
36– практичні заняття
36– лабораторні заняття
30– курсове проектування
Кількість годин самостійної роботи 102
Кількість кредитів ECTS 7
Вид підсумкового контрою екзамен
Лектор
Науковий ступінь к.т.н.
Вчене звання доцент
Прізвище, ім'я та по батькові Шадріна Галина Михайлівна
Вступні вимоги (базові дисципліни)
Biomedical Processes and Signal Modeling 
Мета та завдання навчальної дисципліни
The purpose of the study of the discipline: acquisition of knowledge by biomedical signal processing methods and methods of their implementation in the form of algorithms and computer programs.
Tasks of the discipline: application of physical and biophysical methods of investigation of the state of biological objects, diagnostics of the state and management of it with the use of energy, real and informational influences. 
Опис навчальної дисципліни
Лекційний курс Topic 1. Biomedical signals, their classification, the main provisions for their receipt and processing. Biomedical signals. Types of biosignals. Basic methods of studying the functional state of the human body. The task of receiving and analyzing biosignals.
Topic 2. Biomedical signals, noise and their mathematical description for the problem of processing. Biomedical signal-model-method-algorithm-program. Mathematical description of biosignals. Stochastic biosignals.
Topic 3. Digital biomedicalsignal processing. How to implement digital processing for biosignals. Advantages of digital signal processing.
Topic 4. Correlation analysis of biomedical signals. Energy characteristics of biomedical signals. Offset (shift) of signals in time. Correlation characteristics of biomedical signals. Pearson correlation coefficient.
Topic 5. Fourier analysis. Why we need signal transformation. Properties of Fourier transform. Fast Fourier transform and its advantage. Harmonic analysis of biomedical signals. Geometric data model. The distance between the signals. Representation of biomedical signals in the form of sum of series of elementary functions. Harmonious analysis of periodic biomedical signals. Properties of the Fourier series.
Topic 6. Spectra of periodic biomedical signals. Energy characteristics of periodic biomedical signals. Basic principles of the theory of spectra, operations on spectra. The relationship between effective spectrum width and signal duration. Spectrum of nonperiodic biomedical signals. Reference theorem. Representation of Biomedical Signals by Laplace Transformation. Link with the Fourier and Laplace transforms.
Topic 7. Spectral correlation analysis of random biomedical signals. Connection of the covariance function of a random signal with its energy spectrum, Wiener-Khinchin theorem. Mutual correlation function and mutual spectral density of two random processes.
Topic 8. Statistical analysis of random biomedical signals. Physical nature of random biomedical signals. Covariance function of random biomedical signal. Stationary and agility. Interconnection of the basic characteristics of random signals. Statistical methods for the analysis of random biomedical signals.
Topic 9. Random signal with normal probability density distribution law (Gaussian process). Two-dimensional probability density and energy spectrum of random process.
Topic 10. Wavelet treatment of biomedical signals. basic functions, basic properties, the principle of multiple-scale data analysis.
Topic 11. Periodically correlated random process as a model of biomedical signals. Properties of biomedical signals. Power theory of stochastic random processes. PCI as a model of biosignals.
Topic 12. Synthesis method of biomedical signals processing. The essence of the method. The algorithm of the common-mode processing method.
Topic 13. Component method for processing biomedical signals. The essence of the method. The algorithm of the component method of processing.
Topic 14. A filter method for biomedical signals processing. The essence of the method. Algorithm of a filter processing method.
Topic 15. Non-recursive digital filters. Types of filters. Method for calculating non recursive digital filters. Filters with linear phase characteristics. Ideal frequency filters. Final approximation of ideal filters. Smooth frequency digital filters. Differentiating digital filters. Alternative methods of calculating non-recursive digital filters.
Topic 16. Z-transformations of signals. Definition of Z-transform. Z-transformation mapping. Z-polynomial space. Properties of Z-transformation. Reverse Z-transformation. Application of Z-transformation.
Topic 17. Recursive digital filters. The principle of recursive filtration. Development of recursive digital filters. Bilinear Z-transformation. Types of recursive frequency filters. Butterworth low-pass filter. Butterworth's high-frequency filter.
Topic 18. Discrete convolution. Discrete convolution (convolution). Discrete convolution equation. Technique of convolution.
Практичні заняття 1. Correlation processing of biosignals
2. Spectral processing of biosignals (DFT, FFT)
3. Laplace transform
4. Z-transform
5. Spectral correlation processing of biosignals
6. Statistical processing of biosignals
7. Wavelet processing of biosignals
8. Single-phase processing
9. Component method for processing biosignals
Лабораторний практикум 1. Introduction to MATLAB possibilities for signal processing.
2. Operators MATLAB for control the computing process.
3. Operation with vectors and matrices. Time vectors and sinusoids. Wave form generation.
4. Discrete Fourier transform. Fast Fourier transform.
5. Z-transform.
6. SPTool – an Interactive Signal Processing Environment.
7. Filter design.
8. Operations with functions.
9. Wavelet Toolbox using for biosignals wavelet analysis.
10. Graphic design of the results of processing biomedical signals in the form of 2D-graphs.
11. Graphic design of biomedical signal processing results in the form of 3D graphs.
12. Load biosignals and save processing results to a file.
Критерії оцінювання
Criteria of students’ progress assessment
Module 1 – 40 points:
10 points – test,
30 points – lab and practical works.
Module 2 – 35 points:
10 points – test,
25 points – lab and oractical works.
Form of final control – examination – max 25 points 
Рекомендована література
1. Abakumov VG, Gotra ZY, Zlepko SM Registration, processing and control of biomedical signals, Vinnytsia, 2011. 352 p.
2. Abakumov VG, Geranin VO, Rybin OI, Svatosh J., Sinekop YS Biomedical signals and their processing. Kyiv, 1997. 352 p.
3. Rangayan RM Analysis of biomedical signals. Practical hike. Per. with English under ed. A.P. Restless. Moscow, 2007. 440 p.
4. Babak VP, Handetsky VS, Shrufer E. Signal processing: A textbook for students of technical specialties. Kyiv, 1996.
5. Shrufer E. Signal processing: digital processing of sampled signals: Textbook for students of technical specialties of universities. Kiev, 1995.
6. Sergienko A.B. Digital signal processing. St. Petersburg, 2003. 604 p. 
Укладач курсу
к.т.н., доц. Шадріна Галина Михайлівна 
Дата останнього оновлення: 2020-10-12 10:13:19